Posts Tagged ‘pull economy’

Pull the teaching core to the edge of learning

January 1, 2012 2 comments

Next Generation Learning Challenges is a grant program that provides investment capital through waves of funding (third wave currently runs through June 2012) to boost educational success for all students, as measured by college readiness, persistence, and completion, through technology-enabled solutions. The program’s idea is that technology transforms not only industries, but people: how we organize, conduct business, form communities, discover, create, and … learn. The program’s requests for proposals draw a clear picture of the number one priority that should shake the core of our current education system, affordability for high quality education, or designing effective learning environments of scale.

Innovation at the edge is doing the pull from the core
How do we get about achieving this priority when constrained by the Baumol’s effect (Snir, 2011), saying that no or little gain in productivity can be obtained in highly skilled labor intensive fields such as education or nursing. After all, it takes teachers the same amount of time to grade an essay today as it took them 50 years ago. A model to consider is John Seeley Brown’s theory (Brown, 2010) of inverting a 20th century push economy into a 21st century pull economy. A push economy is characterized by big firms with large capital and labor that mass build a lot of standardized products and push them into the market using a centralized, hierarchical, and tightly controlled distribution infrastructure. A pull economy is meant for agile, flexible firms that apply rapid, on-the-fly customization to pull the best and new ideas through loosely coupled networks, open commons, and spikes of capabilities around the world. Cloud computing and social media are the ingredients of the sociotechnical systems that populate the infrastructure of the 21st century pull economy.

Contrary to the conventional wisdom of the company’s core that has been pulling or absorbing innovation from the edges, The Power of Pull book (Hagel III, Brown, and Davidson, 2010) introduces the idea of a dominant edge that will pull the core to innovate the core’s business. A telling example in Brown’s presentation (Brown, 2010) is the social development network of one of the biggest software firms, SAP. The SAP’s social development network is currently involving 1.4 million developers from around the world with access to an open platform that socializes the construction of the next generation SAP products. My example is that of the edge developed by the Fedora Project around the Red Hat and Ubuntu cores. On the core-edge spike spectrum, at the extreme of a core-less edge lies Wikipedia and other commons-based peer production systems (Benkler, 2006), but this makes the topic for another discussion.

Student engagement and mastery learning should not be constrained by seat time
Back into the education realm, it is certainly time to change the factory model of education, in which schools, textbook publishers, and instructional technology vendors predict what learners need from kindergarten to graduate education, build and protect (copyright, that is) massive stocks of knowledge assets, and push them through traditional classrooms in which, eventually, teachers push their teaching, one-size-fits-all core at students.

Technology is a productivity engine. What challenges technological applications to learning is the craft of weaving within technology people, those who directly participate in an educational setting – students and teachers alike; and processes, how participation of students and teachers forms and manifests when designing, using, and evaluating educational technologies. Learning sciences have discovered that educational processes, to effectively impact learning, should be designed and structured with the learner’s needs in mind.

Actively engaging students in learning experiences, or active learning, is as old as the Socratic method and has been pondered upon by constructivists (Jean Piaget, Lev Vygotsky, Herbert Simon, among the most influential) and put in practice through constructionist (Seymour Paper’s model of learning) and other experiential and inquiry-based learning approaches. Another innovation that informs learner-centered educational environments is Bloom’s student mastery, personalized learning (Bloom, 1984), as opposed to learning constrained by seat time. His striking finding, known as the 2-sigma effect, is that one-on-one tutoring produces two standard deviations improvements in student learning compared to the traditional classroom lecture model. Bloom’s studies have shown that the average tutored student performed better than 98% of the students in the traditional class.

Student pull versus lecture push
Disrupting the class (Christensen, Horn, and Johnson, 2008), inverting the classroom (Lage, Platt, and Treglia, 2000), and the viral success of the Khan Academy open platform and video lessons create exciting opportunities for students to pull the learning that bring them success.

Technology and innovative sociotechnical systems that are possible with cloud computing and social media do not scale teacher and student productivity as measured by student-to-teacher ratio. Instead, individual and group self-directed experiences get more productive when students pull and personalize learning from a dynamic, social network of resources. The shift from lecture-push to student-pull refines the student-to-teacher ratio metric into “student-to-valuable-human-time-with-the-teacher” ratio (in the words of Sal Khan).

Stanford and MIT examples
The blending of personalized learning with highly effective interpersonal interactions dramatically changes teaching and learning as we know it. Stanford professor Daphne Koller tells the story of three free and online computer science courses that were offered in fall 2011, Intro to AI, Machine Learning, and Databases. The courses give students access to lecture videos, assignments, and exams, provide students with regular feedback on progress, and have them participate in a forum in which they vote on questions and answers . In the first four weeks, 300,000 students registered for theses courses with millions of video views and thousands of submitted assignments. More interactive formats are in works, such as real-time group discussions, affordably and at large scale (Koller, 2011).

MIT has just announced the launch of the MIT online learning initiative of a portfolio of MIT courses through an online interactive learning platform, MITx. An experimental prototype version of MITx will be launched in spring 2012 timeframe and, once the open learning infrastructure is in stable form, MIT will release the open-source software infrastructure and determine ways for other institutions to join MIT in improving the technology.

Next Generation Learning Challenges: Transforming education through technology.

Snir, M. (2011). “Computing and Information Science and Engineering: One Discipline, Many Specialties”. Communications of the ACM, 54:3(38-41).

Brown, J.S. (2010). “Collaborative Innovation and a Pull Economy”. Video: JSB at Stanford, April 17, 2010.

Hagel III, J., Brown, J.S., and Davidson, L. (2010). The Power of Pull: How Small Moves, Smartly Made, Can Set Big Things in Motion. New York: Basic Books.

Benkler, Y. (2006). The Wealth of Networks: How Social Production Transforms Markets and Freedom. New Haven: Yale University Press.

Christensen, C.M., Horn, M.B., and Johnson, C.W. (2008). Disrupting Class: How Disruptive Innovation will Change the Way the World Learns. New York: McGraw-Hill.

Lage, M.J., Platt, G.J., and Treglia, M.(2000). “Inverting the Classroom: A Gateway to Creating an Inclusive Learning Environment“. Journal of Economic Education, 30:1(30-43).

Bloom, B. (1984). “The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One Tutoring”, Educational Researcher, 13:6(4-16).

Koller, D. “Death Knell for the Lecturer: Technology as a Passport to Personalized Education”. New York Times, December 5, 2011.